Skip to main content

Evidence of log-periodic oscillations and increasing icequake activity during the breaking-off of large ice masses

Buy Article:

$35.11 plus tax (Refund Policy)


In 1973, surface velocities were measured for the first time on an unstable hanging glacier to predict its collapse. The observed velocities have been shown to increase as a power-law function of time up to infinity at the theoretical time of failure (known as 'finite time singularity'). This is the characteristic signature of critical phenomena and has been observed in the case of various other naturally occurring ruptures such as earthquakes, landslides and snow avalanches. Recent velocity measurements performed on Weisshorn and Mönch hanging glaciers, Switzerland, confirmed this behaviour, while log-periodic oscillations superimposed on this general acceleration were also detected. Despite different rupture mechanisms in both cases, the log frequency of the oscillations is shown to be the same. The seismic activity was recorded near the unstable Weisshorn hanging glacier, simultaneously with the velocity measurements. Results show dramatically increasing icequake activity 3 days before the final collapse. Combined motion–seismic monitoring seems to be a promising way to accurately predict the breaking-off of hanging glaciers. Such a combined analysis is also useful for capturing the physical mechanisms of rupture in natural heterogeneous materials.

Document Type: Research Article


Publication date: December 1, 2008

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more