Skip to main content

Effects of sample size, centrifugal acceleration and brine inclusions on the elastic modulus of sea ice

Buy Article:

$35.11 plus tax (Refund Policy)


We present a re-analysis of the results obtained from a series of measurements on freshwater and saline ice beams under various centrifugal accelerations. The data show a strong influence of beam size, brine volume and centrifugal acceleration on the elastic modulus of ice. The data suggest a transition brine volume at around 9%, which might occur close to the melting point, at which the elastic modulus of ice drops rapidly due to a possible change of brine-pocket structure. Furthermore, for brine volumes less than 9%, there is a negligible increase in the elastic modulus measured under high centrifugal acceleration, but for brine volumes more than 9% the increase is considerable, approaching that measured with freshwater ice. This may be due to necking of brine drainage channels just above the ice/water interface at high centrifugal acceleration. A model of sea ice was constructed based on existing theories of brine inclusions in sea ice, which satisfactorily predicts the observed trends.

Document Type: Research Article


Publication date: July 1, 2008

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more