Skip to main content

Atmospheric influence on the deuterium excess signal in polar firn: implications for ice-core interpretation

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

The seasonal deuterium excess signal of fresh snow samples from Neumayer station, coastal Dronning Maud Land, Antarctica, was studied to investigate the relationship between deuterium excess and precipitation origin. An isotope model was combined with a trajectory model to determine the relative influence of different moisture sources on the mean annual course of the deuterium excess, focusing on the phase lag between 18O and excess d. Whereas the annual course of 18O always shows an austral summer maximum, which clearly depends on local temperature and the annual course of moisture source-area parameters, the deuterium excess of the fresh snow samples shows maximum values already in spring. There can be many different reasons for the time lag between 18O and deuterium excess in an ice core, including post-depositional processes and changes in the moisture source of precipitation. The use of fresh snow samples enabled us to exclude post-depositional processes and study solely the influence of precipitation origin. Changes in the moisture source connected to systematic changes in the general atmospheric circulation can have a strong influence on the phase lag between deuterium excess and 18O, which has to be taken into account for climatic interpretation of stable-isotope profiles from ice cores.

Document Type: Research Article

DOI: https://doi.org/10.3189/002214308784408991

Publication date: 2008-01-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at https://www.cambridge.org/core/journals/journal-of-glaciology.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more