Skip to main content

Instruments and Methods

Simulating complex snow distributions in windy environments using SnowTran-3D

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


We present a generalized version of SnowTran-3D (version 2.0), that simulates wind-related snow distributions over the range of topographic and climatic environments found globally. This version includes three primary enhancements to the original Liston and Sturm (1998) model: (1) an improved wind sub-model, (2) a two-layer sub-model describing the spatial and temporal evolution of friction velocity that must be exceeded to transport snow (the threshold friction velocity) and (3) implementation of a three-dimensional, equilibrium-drift profile sub-model that forces SnowTran-3D snow accumulations to duplicate observed drift profiles. These three sub-models allow SnowTran-3D to simulate snow-transport processes in variable topography and different snow climates. In addition, SnowTran-3D has been coupled to a high-resolution, spatially distributed meteorological model (MicroMet) to provide more realistic atmospheric forcing data. MicroMet distributes data (precipitation, wind speed and direction, air temperature and relative humidity) obtained from meteorological stations and/or atmospheric models located within or near the simulation domain. SnowTran-3D has also been coupled to a spatially distributed energy- and mass-balance snow-evolution modeling system (SnowModel) designed for application in any landscape and climate where snow is found. SnowTran-3D is typically run using temporal increments ranging from 1 hour to 1 day, horizontal grid increments ranging from 1 to 100 m and time-spans ranging from individual storms to entire snow seasons.

Document Type: Research Article


Publication date: 2007-03-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more