Skip to main content

A laboratory study of ploughing

Buy Article:

$35.11 plus tax (Refund Policy)


A new laboratory device is used to investigate the resistance to clast ploughing at the base of glaciers. In experiments in which a ploughing tip is dragged at different velocities and effective normal stresses through water-saturated sediment from Unteraargletscher, Switzerland, pore pressures above and below the hydrostatic level develop around the tip. The absolute magnitude of these non-hydrostatic pore pressures increases with the ploughing velocity but remains small compared to the sediment yield strength, so that the pore pressures do not significantly weaken the sediment. The shear stress on the tip is independent of the velocity but scales with the applied effective normal stress, in agreement with a Coulomb-plastic behavior of the sediment. The results indicate that, depending upon position close to the object, both sediment compaction and dilation can influence the pore-pressure distribution and thus the sediment yield strength. Comparison with other studies of clast ploughing suggests that the significance of sediment weakening in front of ploughing clasts may depend on the relative magnitudes of the non-hydrostatic pore pressures. Therefore, depending on the dominant pore-pressure response of the deforming sediment, clast ploughing may have the potential to either trigger ice-flow instabilities or stabilize glacier motion.

Document Type: Research Article


Publication date: March 1, 2007

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more