Skip to main content

A simple model to estimate ice ablation under a thick debris layer

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

This paper presents a simple model to estimate ice ablation under a thick supraglacial debris cover. The key method employed in the model is to establish a link between the debris heat flux and the debris temperature at a certain depth when the heat transfer in the debris is described by a diffusion process. Given surface temperature, debris thermal properties and relevant boundary conditions, the proposed model can estimate mean debris temperature at interfaces of different debris layers using an iterative procedure, and then the heat flux for ice ablation. The advantage of the proposed model is that it only requires a few parameters to conduct the modeling, which is simpler and more applicable than others. The case study on Koxkar glacier, west Tien Shan, China, shows, in general, that the proposed model gives good results for the prediction of debris temperatures, except for an apparent phase shift between modeled and observed values. We suggest that this error is mainly due to complex phase relations between debris temperature and debris heat flux. The modeled ablation rates at three experimental sites also show good results, using a direct comparison with observed data and an indirect comparison with a commonly used energy-balance model.

Document Type: Research Article

DOI: https://doi.org/10.3189/172756506781828395

Publication date: 2006-12-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at https://www.cambridge.org/core/journals/journal-of-glaciology.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more