If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Calculating ice melt beneath a debris layer using meteorological data

$37.91 plus tax (Refund Policy)

Buy Article:

Abstract:

Generalized numerical models of sub-debris ice ablation are preferable to empirical approaches for predicting runoff and glacier response to climate change, as empirical methods are site-specific and strongly dependent upon the conditions prevailing during the measurement period. We present a modified surface energy-balance model to calculate melt beneath a surface debris layer from daily mean meteorological variables. Despite numerous simplifications, the model performs well and modelled melt rates give a good match to observed melt rates, suggesting that this model can produce reliable estimates of ablation rate beneath debris layers several decimetres thick. This is a useful improvement on previous models which are inappropriate for thick debris cover.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/172756506781828584

Publication date: July 1, 2006

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more