Skip to main content

Steady radial ice-sheet flow with fabric evolution

Buy Article:

$35.11 plus tax (Refund Policy)


Reorientation of individual crystal glide planes, as isotropic surface ice is deformed during its passage to depth in an ice sheet, creates a fabric and associated anisotropy. We adopt an evolving orthotropic viscous law which was developed to reflect the induced anisotropy arising from the mean rotation of crystal axes during deformation. This expresses the deviatoric stress in terms of the strain rate, strain and three structure tensors based on the principal stretch axes, and involves one fabric response function which determines the strength of the anisotropy. The initial isotropic response enters as a multiplying factor depending on a strain-rate invariant and incorporating a temperature-dependent rate factor. The fabric response function has been constructed by correlations with complete (idealized) uniaxial compression and shearing responses for both 'cold' and 'warm' ice. The possible effects of such fabric evolution are now illustrated by determining steady radially symmetric flow solutions for an ice sheet with a prescribed temperature distribution and subject to an elevation-dependent surface accumulation/ablation distribution, zero basal melting and a prescribed basal sliding law. Comparisons are made with solutions for the conventional isotropic viscous law, for a flat bed, for a bed with a single modest slope hump and for a bed with a single modest slope hollow, for both cold and warm ice.

Document Type: Research Article


Publication date: March 1, 2006

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more