Skip to main content

Relating microwave backscatter azimuth modulation to surface properties of the Greenland ice sheet

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


Azimuth dependence of a normalized radar cross-section (°) over the Greenland ice sheet is modeled with a simple surface scattering model. The model assumes that azimuth anisotropy in surface roughness at scales of 3–300 m is the primary mechanism driving the modulation. To evaluate the contribution of azimuth anisotropy in surface roughness to the radar backscatter, the model is compared to models based on isotropic surface roughness. The models are inverted to estimate snow surface properties using ° measurements from the C-band European Remote-sensing Satellite advanced microwave instrument in scatterometer mode. Results indicate that the largest mesoscale rms surface slopes are found in the lower portions of the dry snow zone. Estimates of the preferential direction in surface roughness are highly correlated with katabatic wind fields over Greenland, which is consistent with wind-formed sastrugi as the dominant mechanism causing azimuth modulation of °. The maximum improvement of the azimuth modulation surface model compared to its isotropic counterparts occurs in the lower regions of the dry snow zone where the azimuth variability of ° is the largest. In regions with azimuth modulation over 1 dB, the mean root-mean-square error estimate of the azimuth-dependent surface scattering model is 0.46 dB compared with 0.70 dB for similar models using isotropic roughness.

Document Type: Research Article


Publication date: 2006-03-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more