Skip to main content

Thermo-erosional notch development at fresh-water-calving Tasman Glacier, New Zealand

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

Controls on glacier calving rates are receiving increased scientific interest. At fresh-water-calving glaciers, limnological factors might be more important than glaciological ones. Measurements of thermo-erosional notch development at the calving ice cliff of Tasman Glacier, New Zealand, suggest that the calving rates at this glacier are directly controlled by the rate of thermal undercutting. Notch formation rates typically vary between 10 and 30 cm d−1 (maximum rate 65 cm d−1) in summer, corresponding to an average calving rate of 34 m a−1. Notch formation is slower than waterline melt and is controlled by water temperatures and circulation, cliff geometry, debris supply and water-level fluctuations. The latter shift the position of undercutting, resetting the level of the notch formation process and thereby slowing it. The geometry of the notch and the debris supply determine the extent of influence of the lake on notch water temperatures and circulation. Hence, water temperatures in the lake are not necessarily indicative of the rate of notch formation. The prediction of rate of notch formation from far-field variables is hampered by the complex interaction of the influencing factors. The significance of thermal undercutting as a calving rate-controlling process decreases with increasing ice velocities, calving rates and surface gradients.

Document Type: Research Article

DOI: https://doi.org/10.3189/172756506781828773

Publication date: 2006-03-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at https://www.cambridge.org/core/journals/journal-of-glaciology.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more