Skip to main content

In situ measurements of till deformation and water pressure

Buy Article:

$35.11 plus tax (Refund Policy)


A newly developed hammer was used to insert two autonomous probes 0.8 m and 2.1 m into clast-rich subglacial till under Black Rapids Glacier, Alaska, USA. Both probes were instrumented with a dual-axis tilt sensor and a pore-water pressure transducer. The data are compared to a 75 day record of surface velocities. Till deformation at depth was found to be highly seasonal: it is significant during an early-season speed-up event, but during long periods thereafter measured till deformation rates are negligible. Both tilt records show rotation around the probe axis, which indicates a change in tilt direction of about 30°. The tilt records are very similar, suggesting spatial homogeneity on the scale of the probe separation (4 m horizontal and 3.3 m vertical). There is evidence that during much of the year sliding of ice over till or deformation of a thin till layer (<20 cm) accounts for at least two-thirds of total basal motion. Basal motion accounts for 50–70% of the total surface motion. The inferred amount of ice–till sliding is larger than that found at the same location in a previous study, when surface velocities were about 10% lower. We suggest that variations in ice–till coupling account for the observed variations in mean annual speed.

Document Type: Research Article


Publication date: March 1, 2006

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more