Skip to main content

Revisiting bulk heat transfer on Peyto Glacier, Alberta, Canada, in light of the OG parameterization

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

A scheme for katabatic turbulent heat transfer proposed by Oerlemans and Grisogono (2002), here referred to as the OG parameterization, is compared with bulk heat-transfer estimates on Peyto Glacier, Alberta, Canada. Automatic weather stations (AWSs) provide off-glacier data to drive the parameterization and glacier data for bulk estimates. Micrometeorological datasets are used to assess two schemes that employ the Monin–Obukhov stability parameter, z/L, to modify logarithmic, or neutral, bulk heat-transfer equations to allow for stability. Both schemes fail at >1 m above the surface, where the AWS sensors are located, unless a modified approach is used in which the stability correction is constant for z/L ≥ 1/3. Then the bulk sensible-heat-flux density falls to ≈0.93 of its neutral estimate at all measurement levels, thus providing a basis for comparison with the parameterization. The results of the comparison are very good, indicating that a one-to-one relationship between bulk and parameterized values can be achieved by optimizing the fit with a background exchange coefficient and, because there is only one off-glacier AWS, using a sinusoidal function to model the diurnal variation of the potential temperature lapse rate.

Document Type: Research Article

DOI: https://doi.org/10.3189/172756504781829819

Publication date: 2004-12-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at https://www.cambridge.org/core/journals/journal-of-glaciology.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more