Skip to main content

A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stations

Buy Article:

$35.11 plus tax (Refund Policy)

Abstract:

We use data from four automatic weather stations (AWSs) in Dronning Maud Land, East Antarctica, to study the surface mass balance and its components. Distinct differences were found between the moisture climates of the high plateau, the katabatic wind zone and the coastal ice shelves: significant undersaturation occurs year-round in the katabatic wind zone, while on the high plateau and on the coastal ice shelf the air is usually close to saturation. In summer, absorption of shortwave radiation at the snow surface enhances surface sublimation at all sites, removing 3–9% of the annual solid precipitation. Significant summer melting is an equally important ablation term near the coast, but vanishes inland. Vertically integrated column drifting-snow sublimation was estimated using two different methods. This process appears to be similar to or greater in magnitude than surface sublimation. Because intervals between significant precipitation events may last as long as several months, sublimation and melt cause extended periods of surface ablation in summer. In summer, all ablation processes together remove 15–56% of the solid precipitation, or 6–27% on an annual basis.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/172756504781829756

Publication date: December 1, 2004

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
igsoc/jog/2004/00000050/00000171/art00010
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more