If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Internal accumulation in firn and its significance for the mass balance of Storglaciären, Sweden

$37.91 plus tax (Refund Policy)

Buy Article:


The discussion on global change has led to increased interest in glacier mass balance since glaciers can be used as climatic indicators. To meet the need for high-quality mass-balance data requires critical examination of traditional mass-balance methods and their possible errors. One issue regarding mass-balance measurements that has received little attention is internal accumulation. Our study shows that internal accumulation in the firn layer of Storglaciären, Sweden, significantly affects the mass balance of the glacier. This occurs because the winter cold wave penetrates below the previous year's summer surface and into underlying firn. We estimated internal accumulation from measurements of temperature and water content in firn. The depth of the 0°C isotherm correlated with snow depth and air temperature, so that low snow depth and low air tem-perature separately cause a deeper 0°C isotherm. We determined irreducible gravimetric water content in firn to 2–3%, which corresponds to an irreducible water saturation of 6–8%. Our value for firn is relatively high compared with that for snow, probably due to trapped water in isolated firn pores. Refreezing of percolating meltwater in spring accounted for ~30% of annual internal accumulation. The remaining 70% was due to refreezing of retained capillary water in firn pores during winter. Disregarding internal accumulation would lead to underestimation of annual net mass balance by 0.04–0.06 m w.e., corresponding to 3–5% of annual accumulation of the entire glacier in an average year. Hence, internal accumulation potentially becomes a source for systematic error if not accounted in mass-balance measurements.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/172756504781830277

Publication date: January 1, 2004

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more