Skip to main content

Isotopic diffusion in polycrystalline ice

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


Quantitative ice-core paleoclimatology must account for post-depositional processes, such as vapor-phase diffusion in the firn. After pore close-off, diffusion continues to smooth the stable-isotope records 18O and D that are eventually recovered from the ice, leading to the loss of high-frequency information. Johnsen and others (1997) found much higher rates of diffusive smoothing in the Greenland Icecore Project (GRIP) Holocene ice than would be predicted by diffusion through solid ice alone, and Nye (1998) argued that transport through liquid veins might explain this apparent excess diffusion. However, the analysis of Johnsen and others (2000) indicates that the required vein dimensions may be unrealistically large. Here, we model the diffusion of stable isotopes in polycrystalline ice and show that the predictions of Nye (1998) and those of Johnsen and others (2000) actually represent two end-members in a range of potential behavior. Our model determines which of these asymptotic regimes more closely resembles the prevailing conditions and quantifies the role of pre-melted liquid in the smoothing of isotopic signals. The procedure thereby ties together the two approaches and provides a rostrum for accurate analysis of isotope records and paleotemperature reconstructions.

Document Type: Research Article


Publication date: 2003-06-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more