A mechanism for differential frost heave and its implications for patterned-ground formation

$37.91 plus tax (Refund Policy)

Buy Article:

Abstract:

The genesis of some types of patterned ground, including hummocks, frost boils and sorted stone circles, has been attributed to differential frost heave (DFH). However, a theoretical model that adequately describes DFH has yet to be developed and validated. In this paper, we present a mathematical model for the initiation of DFH, and discuss how variations in physical (i.e. soil/vegetation properties) and environmental (i.e. ground/air temperatures) properties affect its occurrence and length scale. Using the Fowler and Krantz multidimensional frost-heave equations, a linear stability analysis and a quasi-steady-state real-time analysis are performed. Results indicate that the following conditions positively affect the spontaneous initiation of DFH: silty soil, small Young's modulus, small non-uniform surface heat transfer or cold uniform surface temperatures, and small freezing depths. The initiating mechanism for DFH is multidimensional heat transfer within the freezing soil. Numerical integration of the linear growth rates indicates that expression of surface patterns can become evident on the 10-100 year time-scale.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/172756503781830854

Publication date: January 1, 2003

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more