Skip to main content

Last Glacial Maximum equilibrium-line altitudes and paleoclimate, northern Uinta Mountains, Utah, U.S.A.

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


Nineteen former valley glaciers were reconstructed for their Last Glacial Maximum (LGM) extents in the northern Uinta Mountains, Utah, U.S.A. Mean equilibrium-line altitudes (ELAs) calculated by four methods (accumulation-area ratio, toe-headwall altitude ratio, lateral moraines and cirque floors) range from 3050 to 3300 m a.s.l. Modern mean summer temperatures (Ts) at the ELAs range from 8.7° to 11.2°C, while modern winter precipitation (P) ranges from 354 to 590 mm snow water equivalent (SWE). Based on the difference in elevation of mean ELAs across the range, LGM P values must have ranged from 940 to 3040 mm SWE, assuming the modern summer lapse rate was the same during the LGM. A Ts depression of 5.5°C is required for these precipitation values to plot in the range of modern ELA values. The reconstructed increase in P at the western end of the range is 10 times the modern increase, reflecting the influence of pluvial Lake Bonneville. Assuming ELA depression (ΔELA) resulted from this P increase and a uniform 5.5°C Ts decrease, the regional LGM ΔELA was approximately 900 m.

Document Type: Research Article


Publication date: 2002-03-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more