Skip to main content

Velocities, strain rates, stresses, crevassing and faulting on Glacier de Saint-Sorlin, French Alps, 1957-76

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

Stake surveys on Glacier de Saint-Sorlin, French Alps, during the period 1957-76 show that annual surface velocities fit a linear vectorial model, with a term depending on the site, another on the year, and an important random component. Strain rates, viscosities and stresses at shallow depth are computed using strain triangles of hectometric (102m) size. Between 1961/62 and 1972/73 the isotropic point, where streamlines cease to converge, moved downstream about 200 m. This trend may explain increasing velocities. Crevasses appear where annual strain is > 1.2%. Faults limit the effective shear stress at the surface to about 0.38 bar. Ten modes of flow are distinguished, instead of only two for the two-dimensional model (compressive and extensive). The gradients of shallow stresses, which ensure extra driving forces, are computed with another mosaic of triangles of similar size (stress triangles). There are also important extra driving forces at the bottom, which force the flow to deviate from the direction of the steepest surface slope. Two criteria allow elimination of stress triangles where these unknown basal extra driving forces are important. Even so, no sliding law in terms of mean annual values can be obtained. This study shows that the classical perturbation theory, which explains advances and retreats by the arrival of kinematic waves, is unsuitable for glaciers of kilometric size.

Document Type: Research Article

DOI: https://doi.org/10.3189/172756502781831575

Publication date: 2002-01-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at https://www.cambridge.org/core/journals/journal-of-glaciology.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more