Skip to main content

Modeling precipitation over ice sheets: an assessment using Greenland

Buy Article:

$35.11 plus tax (Refund Policy)

Abstract:

The interaction between ice sheets and the rest of the climate system at long time-scales is not well understood, and studies of the ice ages typically employ simplified parameterizations of the climate forcing on an ice sheet. It is important therefore to understand how an ice sheet responds to climate forcing, and whether the reduced approaches used in modeling studies are capable of providing robust and realistic answers. This work focuses on the accumulation distribution, and in particular considers what features of the accumulation pattern are necessary to model the steady-state response of an ice sheet. We examine the response of a model of the Greenland ice sheet to a variety of accumulation distributions, both observational datasets and simplified parameterizations. The predicted shape of the ice sheet is found to be quite insensitive to changes in the accumulation. The model only differs significantly from the observed ice sheet for a spatially uniform accumulation rate, and the most important factor for the successful simulation of the ice sheet's shape is that the accumulation decreases with height according to the ability of the atmosphere to hold moisture. However, the internal ice dynamics strongly reflects the influence of the atmospheric circulation on the accumulation distribution.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/172756502781831593

Publication date: January 1, 2002

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
igsoc/jog/2002/00000048/00000160/art00008
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more