Skip to main content

Flow dynamics of tidewater glaciers: a numerical modelling approach

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


The dynamics of grounded tidewater glaciers is investigated with a time-dependent numerical flow model, which solves the full equations for the stress and velocity fields and includes a water-pressure-dependent sliding law. The calving criterion implemented in the model shifts the calving front at each time-step to the position where the frontal ice thickness exceeds flotation height by a prescribed value. With this model, the linear relation between calving rate and water depth proposed on empirical grounds is qualitatively reproduced for the situation of a slowly retreating or advancing terminus, but not for situations of rapid changes. Length changes of tidewater glaciers, i.e.especially rapid changes, are dominantly controlled by the bed topography and are to a minor degree a direct reaction to a mass-balance change. Thus, accurate information on the near-terminus bed topography is required for reliable prediction of the terminus changes due to climate changes. The results also confirm the suggested cycles of slow advance and rapid retreat through a basal depression. Rapid changes in terminus positions preferably occur in places where the bed slopes upwards in the ice-flow direction.

Document Type: Research Article


Publication date: 2001-12-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.

    Beginning in 2016, content will be available at
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more