Skip to main content

Diffusive mixing between shearing granular layers: constraints on bed deformation from till contacts

Buy Article:

$35.11 plus tax (Refund Policy)

Abstract:

Shearing of subglacial till has been invoked widely as a mechanism of glacier motion and sediment transport, but standard indicators for determining shear strain from the geologic record are not adequate for estimating the very high strains required of the bed-deformation model. Here we describe a laboratory study of mixing between shearing granular layers that allows an upper limit to be placed on bed shear strain in the vicinity of till contacts. Owing to random vertical motions of particles induced by shearing, mixing can be modeled as a linearly diffusive process, and so can be characterized with a single mixing coefficient, D. Ring-shear experiments with equigranular beads and lithologically distinct tills provide the value of D, although in experiments with till D decreases systematically with strain to a minimum value of 0.0045 mm2. Kinetic gas theory provides an estimate of the dimensionless mixing coefficient which is within an order of magnitude of laboratory values. Knowing the minimum value of D, the distribution of index lithologies measured across till contacts in the geologic record can be used to estimate the maximum shear strain that has occurred across till contacts. Application of this technique to the contact between the Des Moines and Superior Lobe tills in east-central Minnesota, U. S. A., indicates that shear strain did not exceed 15 000 at the depth of the contact.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/172756500781832666

Publication date: December 1, 2000

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
igsoc/jog/2000/00000046/00000155/art00010
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more