Skip to main content

Non-temperate glacier flow over wavy sloping ground

Buy Article:

$35.11 plus tax (Refund Policy)


The mean, steady-state particle velocity in gravity-driven glacial flow over sinusoidal, sloping ground is computed using a Lagrangian description of motion. A Newtonian viscous fluid approximation is used for the ice. The glacier surface is free to move and is not subject to any stresses. At the bottom, the ice is frozen to the ground. The non-linear interaction between the basic downslope Poiseuille flow and the bottom corrugations yields a mean Lagrangian perturbation velocity that is always directed in the upslope direction near the ground. The requirement of mass balance imposes a mean negative surface slope in the corrugated region and an associated downslope perturbation flow in the upper part of the glacier. The no-slip condition at the wavy bottom induces a strong velocity shear in the ice, and particularly at the base. Analysis shows that the shear heating associated with shortwave perturbations could, in the case of a marginally frozen ground, lead to melting and subsequent sliding at wave crests along the bottom, while the ice stays frozen at the troughs. It is suggested that for glaciers the resulting high strain rates could lead to crevassing.

Document Type: Research Article


Publication date: June 1, 2000

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more