Skip to main content

The effects of sulfuric acid on the mechanical properties of ice single crystals

Buy Article:

$35.11 plus tax (Refund Policy)


Ice single crystals of various orientations containing various concentrations of H2SO4 up to 11.5 ppm were cut from large pucks of laboratory-grown ice. Constant-strain-rate compression tests were performed on the doped ice crystals both at −20°C at an axial strain rate of 1 × 10−5 s−1 and at −10°C at 1 × 10−6 s−1. The stress–strain curves showed a linearly rising stress with increasing strain, followed by a sharply declining stress after reaching a peak. With further strain, the sharp decline in stress slowed. The tests clearly showed, for the first time, that this naturally occurring impurity dramatically decreases both the peak stress and the subsequent flowstress of ice single crystals. The decrease in the peak strength was related to the square root of the concentration of H2SO4 up to 11.5 ppm, suggesting that the solubility limit of H2SO4 in ice is at least 11.5 ppm. The sulfuric acid also appeared to increase the ductility of the ice. Preliminary examination of a doped ice single crystal by synchrotron X-ray topography suggested that sulfuric acid dramatically increases the grown-in dislocation density.

Document Type: Research Article


Publication date: March 1, 2000

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more