Skip to main content

Geophysical investigations of ice-sheet internal layering and deformation in the Dome C region of central East Antarctica

Buy Article:

$35.11 plus tax (Refund Policy)


New maps are presented of three internal ice-sheet radio-echo sounding (RES)layers in the region 73.5–75.75° S,120–127° E (56 000 km2)around Dome C, central East Antarctica. These layers represent horizons of enhanced acidity resulting from volcanic aerosol deposition, identified from analogue RES data. They are continuous over the entire mapped area, and constitute deformation markers in the ice column. Internal RES layers were initially identified from discrete radar power reflection coefficient profiles and subsequently digitized directly from prints of ice-sheet cross-sections, acquired by continuous RES profiling. Georeferenced vector data are used to generate a 5 km gridcell raster of depth for each internal RES layer, as a basis for contour mapping. Ice deformation in the Dome C region is significant because this is the location of the European Project for Ice Coring in Antarctica. Since internal layers are isochronous, the one-dimensional ice-core data at Dome C can be correlated over the survey area to produce a three-dimensional context.

Document Type: Research Article


Publication date: January 1, 2000

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more