Skip to main content

Physical and chemical characterization of a spring flood event, Bench Glacier, Alaska, U.S.A.: evidence for water storage

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.


Previous studies of alpine glaciers have demonstrated that as water discharge increases through the summer, the predominant mode of subglacial drainage shifts from a distributed system to a more efficient conduit drainage system. We observed an early-melt-season speed-up and flood event lasting roughly 2 days in a small, uncomplicated Alaskan glacier that appears to have resulted from a sudden shift of the subglacial system in response to a significant accumulation of meltwater within the glacier. Calculated melt-water inputs exceeded discharge before the event; the implied change in storage over this 10 day period was equivalent to roughly 0.13 m averaged over the entire glacier bed. The pattern of discharge and suspended-sediment variations and the appearance of large ice chunks in the stream suggest that the speed-up occurred during a period of establishment of new subglacial conduits. A culminating flood and associated suspended-sediment pulse appear to have marked the final establishment of the new section of subglacial conduit. The flood ended the episode of high sliding velocity, but released water with high solute concentrations that reflect relatively long contact time with sediments. Discharge of stored water, inferred from high solute concentrations and lack of diurnal variation in discharge, continued for at least 3 days. While events such as this must recur through the melt season as the conduit system extends up-glacier and the locus of meltwater inputs shifts, their manifestations in the outlet stream will likely be more subdued later in the season.

Document Type: Research Article


Publication date: 1999-06-01

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more