Skip to main content

Boudinage: A Source Of Stratigraphic Disturbance In Glacial Ice In Central Greenland

Buy Article:

$35.11 plus tax (Refund Policy)


A hydrodynamic model of interface stability in a stratified fluid is reviewed. The model predicts that irregularities on the boundaries of a stiff layer, embedded in a soft matrix, are unstable in pure shearing flow, when compression is normal to the layer. Perturbations on such a layer can grow to form symmetric pinch-and-swell structures called boudins. The model predicts initial perturbation growth rates on the boundaries of an interglacial period ice layer. We find that, beneath an ice divide, irregularities on the Sangamon layer boundaries will not kinema-tically decay, as the layer thins. Finite-element modelling is used to determine the strain history of Sangamon ice beneath the divide at Summit, Greenland. That history suggests boundary irregularities have grown, relative to layer thickness, at least 26 fold over the past 90000 years. The result may be severe distortion or severing of the layer. Core holes penetrating the layer may recover anomalously thick or thin columns of ice resulting in erroneous environmental and climatic interpretations. Radio echo-sounding may be useful in searching for zones of boudinage, which should be avoided when coring. Initial perturbations might arise from mass-balance spatial variations or from transient flow fields.

Document Type: Research Article


Publication date: January 1, 1990

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more