Skip to main content

Force Budget: II. Application to Two-Dimensional Flow along Byrd Station Strain Network, Antarctica

Buy Article:

$35.11 plus tax (Refund Policy)


Resistive stresses and velocities at depth are calculated along the Byrd Station Strain Network, Antarctica, using field data. There are found to be large longitudinal variations in basal drag and this result is little affected by errors in the input data or by uncertainties in the constitutive relation for ice. Basal drag varies by a factor of about 2 along the strain network, and is usually equal to the driving stress to within 10‐20%. Sites of high drag are not always correlated with basal topographic highs, indicating that some process such as basal water drainage is involved in controlling the friction at the bed. Basal sliding velocities are very sensitive to errors in measured surface velocities and the rate factor in Glen’s flow law. As a result, calculated sliding velocities are much less reliable than deep stresses, and need to be interpreted with caution.

Document Type: Research Article


Affiliations: 1: Byrd Polar Research Center, The Ohio State University, Columbus, Ohio 43210-1308, U.S.A. 2: Byrd Polar Research Center and Department of Geology and Mineralogy, The Ohio State University, Columbus, Ohio 43210-1308, U.S.A.

Publication date: January 1, 1989

More about this publication?
  • The Journal of Glaciology is published six times per year. It accepts submissions from any discipline related to the study of snow and ice. All articles are peer reviewed. The Journal is included in the ISI Science Citation Index.
  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more