Skip to main content

Detecting biogeochemical activity in basal ice using fluorescence spectroscopy

Buy Article:

$30.69 plus tax (Refund Policy)

Abstract:

Dissolved organic matter (DOM) is an important component of aquatic carbon and nutrient budgets and is a metabolic substrate for organisms at the base of aquatic food chains. Active microbial communities in glaciers affect the abundance and characteristics of organic matter (OM) that is exported to downstream ecosystems. However, how OM is biogeochemically altered in glaciers remains unknown and studies documenting active microbial activity by detecting in situ biogeochemical modifications of OM are lacking due to difficulties characterizing OM and the low concentrations of DOM typical of glacier environments. To address this issue, we measure the abundance and fluorescence characteristics of DOM in basal ice at Victoria Upper Glacier (VUG), McMurdo Dry Valleys, Antarctica. We compare these observations with the results of microbial incubations from the same basal ice samples to determine whether the occurrence of fluorophores indicative of recent microbial activity is linked to the presence of culturable microbial communities containing organisms that could have produced them. Psychrotolerant bacteria were isolated from basal ice samples and were associated with marine humic-like fluorescence. This is interpreted as being indicative of in situ microbial degradation of OM within basal ice at VUG. Marine humic-like material is a recalcitrant form of OM, and its biogeochemical transformation from a relatively labile form of OM in glacier ice may function as a carbon sink.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/172756411795931967

Publication date: December 1, 2010

More about this publication?
  • The Annals of Glaciology is a peer-reviewed, thematic journal published 2 to 4 times a year by the International Glaciological Society (IGS). Publication frequency is determined and volume/issue numbers assigned by the IGS Council on a year-to-year basis and with a lead time of 3 to 4 years. The Annals of Glaciology is included in the ISI Science Citation Index from volume 50, number 50 onwards.

    Themes can be on any aspect of the study of snow and ice. Individual members can make a suggestion for a theme for an Annals issue to the Secretary General, who will forward it to the IGS Publications Committee. The IGS Publication Committee will make a recommendation for an individual themed Annals issue, together with a potential Annals Chief Editor for that issue, to IGS Council. The IGS Council will make the decision whether to proceed, taking into account the spread of topics and the overall capacity for publication of pages in Annals.

  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
igsoc/agl/2010/00000051/00000056/art00007
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more