Skip to main content

Methane flux and high-affinity methanotrophic diversity along the chronosequence of a receding glacier in Greenland

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

Methane consumption in upland soils represents an important part of the biologically mediated sink of tropospheric methane. The present study focuses on the role of glacier forefields as a potential methane sink. The role of these environments, though increasing in size, has not yet been taken into account in the global methane budget. Net methane fluxes were analysed based on a static chamber method on a proglacial chronosequence from the Mittivakkat valley, southeast Greenland. Methane uptake could be measured in 7of the 12 study sites, with highest rates in the oldest materials from the chronosequence, suggesting that methane oxidation potential may increase during glacier recession (80–150 years). In the chamber located at the glacier front, net methane production was observed, indicating that the microbial community changes after glacial recession from being net methanogenic to becoming net methanotrophic. Diversity analyses based on denaturing gradient gel electrophoresis (DGGE) from the methanotrophic communities responsible for methane uptake at atmospheric levels demonstrate that methanotrophic microbial diversity changes along the chronosequence and show that there is a tendency to a larger diversity in the oldest part of the chronosequence. Sequencing of DNA retrieved from the DGGE revealed a restricted diversity of the methanotrophic community: GenBank accession numbers HM534684–HM534736.

Document Type: Research Article

DOI: https://doi.org/10.3189/172756411795932001

Publication date: 2010-12-01

More about this publication?
  • The Annals of Glaciology is a peer-reviewed, thematic journal published 2 to 4 times a year by the International Glaciological Society (IGS). Publication frequency is determined and volume/issue numbers assigned by the IGS Council on a year-to-year basis and with a lead time of 3 to 4 years. The Annals of Glaciology is included in the ISI Science Citation Index from volume 50, number 50 onwards.

    Themes can be on any aspect of the study of snow and ice. Individual members can make a suggestion for a theme for an Annals issue to the Secretary General, who will forward it to the IGS Publications Committee. The IGS Publication Committee will make a recommendation for an individual themed Annals issue, together with a potential Annals Chief Editor for that issue, to IGS Council. The IGS Council will make the decision whether to proceed, taking into account the spread of topics and the overall capacity for publication of pages in Annals.

    Beginning in 2016, content will be available at https://www.cambridge.org/core/journals/annals-of-glaciology.

  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more