If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

The use of salt injection and conductivity monitoring to infer near-margin hydrological conditions on Vestari-Hagafellsjökull, Iceland

$32.93 plus tax (Refund Policy)

Buy Article:

Abstract:

Vestari-Hagafellsjökull is a surge-type outlet glacier from the Langjökull ice cap, Iceland. Intensive hydrological investigations were carried out during non-surge conditions in the summers of 1999 and 2000, and 14 boreholes were drilled using pressurized hot water over an area 800 m from the margin and approximately 5000 m2 in size, where ice thickness ranged from 60 to 70 m. Initial investigations showed that a large fraction of the boreholes drilled to the bed did not drain and were assumed not to connect to the subglacial drainage system. Subsequently, we investigated the hypothesis that boreholes which remain full may do so as a consequence of a balance between englacial inflow and basal drainage rather than the standard assumption that such boreholes are simply unconnected. In testing this hypothesis, we developed a new technique for measuring water motion within the borehole by monitoring the passage of a saline solution down the borehole's water column. The technique allows rates of motion to be established, as well as allowing the quantification of net addition and loss of water from the borehole. Observations based on the motion of saline plumes within the boreholes lead us to the conclusion that some boreholes do indeed remain full as a consequence of a balance between englacial inflow and subglacial drainage. The abrupt dilution that occurs at the top of these boreholes suggests inflow from a near-surface englacial water source, while the descent of the saline plumes implies that water is being lost at the base to the subglacial system. The system appears to be driven by excess water head in the boreholes over flotation and implies that the borehole/bedrock interface can be 'leaky'.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/172756405781813410

Publication date: January 1, 2005

More about this publication?
  • The Annals of Glaciology is a peer-reviewed, thematic journal published 2 to 4 times a year by the International Glaciological Society (IGS). Publication frequency is determined and volume/issue numbers assigned by the IGS Council on a year-to-year basis and with a lead time of 3 to 4 years. The Annals of Glaciology is included in the ISI Science Citation Index from volume 50, number 50 onwards.

    Themes can be on any aspect of the study of snow and ice. Individual members can make a suggestion for a theme for an Annals issue to the Secretary General, who will forward it to the IGS Publications Committee. The IGS Publication Committee will make a recommendation for an individual themed Annals issue, together with a potential Annals Chief Editor for that issue, to IGS Council. The IGS Council will make the decision whether to proceed, taking into account the spread of topics and the overall capacity for publication of pages in Annals.

  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more