Skip to main content

Antarctic ice volume and deep-sea temperature during the last 50 Myr: a model study

Buy Article:

$30.69 plus tax (Refund Policy)


A simple quasi-analytical model is used to study the sensitivity of the Antarctic ice sheet to climate change. The model is axisymmetrical and has a profile that only depends on the ice-sheet radius. The climatic conditions are represented by three parameters: the altitude of the runoff line, the accumulation rate above the runoff line, and the balance gradient below the runoff line. The ice sheet may extend into the sea. At the grounding line the ice velocity is assumed to be proportional to the water depth. For this set-up, an explicit algebraic expression for the total mass budget of the ice sheet can be derived. After calibration of the model with respect to the present-day ice sheet, equilibrium states are studied for a wide range of temperatures. The model predicts a maximum ice volume (+3.4%) for a temperature that is 2.5 K above the present value. For a temperature increase of 7 K, mass loss by runoff and calving are about the same. In this case the ice volume is about 82% of the current value. The ice-sheet model is used to correct the Cenozoic deep-sea temperature record (18O record from benthic foraminifera in ocean sediments) for Antarctic ice volume. The model is forced with the oxygen isotope record, which is then corrected for the calculated ice volume. Therefore, the resulting deep-sea temperature and Antarctic ice-volume curves are mutually consistent. It is concluded that for the last 35 × 106 years the 18O record truly is a mixed temperature/ice-volume record, in which the contributions from these parameters have the same order of magnitude.

Document Type: Research Article


Publication date: 2004-06-01

More about this publication?
  • The Annals of Glaciology is a peer-reviewed, thematic journal published 2 to 4 times a year by the International Glaciological Society (IGS). Publication frequency is determined and volume/issue numbers assigned by the IGS Council on a year-to-year basis and with a lead time of 3 to 4 years. The Annals of Glaciology is included in the ISI Science Citation Index from volume 50, number 50 onwards.

    Themes can be on any aspect of the study of snow and ice. Individual members can make a suggestion for a theme for an Annals issue to the Secretary General, who will forward it to the IGS Publications Committee. The IGS Publication Committee will make a recommendation for an individual themed Annals issue, together with a potential Annals Chief Editor for that issue, to IGS Council. The IGS Council will make the decision whether to proceed, taking into account the spread of topics and the overall capacity for publication of pages in Annals.

  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more