Skip to main content

Numerical study of the time development of drifting snow and its relation to the spatial development

Buy Article:

$30.69 plus tax (Refund Policy)

Abstract:

The time evolution of drifting snow under a steady wind is estimated using a new numerical model of drifting snow. In the model, Lagrangian stochastic theory is used to incorporate the effect of turbulence on the motion of drifting-snow particles. This method enables us to discuss both the saltation and the suspension process. Aerodynamic entrainment, grain/bed collision (splash process), wind modification and particle size distribution are also taken into account. The calculations show that the time needed by the total mass flux to reach a steady state appears to be 3–5s. Vertical profiles of horizontal mass flux near the surface show a similar tendency. In contrast, it takes >50s for the wind speed and the whole mass-flux profile to reach a steady state. This longer time depends on the time-scale of the turbulent diffusion, which is responsible for the mass flux extending to an order of a few meters in height. Applying Taylor's hypothesis, the estimated length scale at which drifting snow reaches equilibrium is around 400 m. This result is comparable with previously reported field observations.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/172756404781815202

Publication date: January 1, 2004

More about this publication?
  • The Annals of Glaciology is a peer-reviewed, thematic journal published 2 to 4 times a year by the International Glaciological Society (IGS). Publication frequency is determined and volume/issue numbers assigned by the IGS Council on a year-to-year basis and with a lead time of 3 to 4 years. The Annals of Glaciology is included in the ISI Science Citation Index from volume 50, number 50 onwards.

    Themes can be on any aspect of the study of snow and ice. Individual members can make a suggestion for a theme for an Annals issue to the Secretary General, who will forward it to the IGS Publications Committee. The IGS Publication Committee will make a recommendation for an individual themed Annals issue, together with a potential Annals Chief Editor for that issue, to IGS Council. The IGS Council will make the decision whether to proceed, taking into account the spread of topics and the overall capacity for publication of pages in Annals.

  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
igsoc/agl/2004/00000038/00000001/art00055
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more