Skip to main content

Numerical simulation of elastic stress in the microstructure of snow

Buy Article:

$30.69 plus tax (Refund Policy)


The mechanical properties of snow depend on its microstructure. The fabric of snow was reconstructed in three dimensions using serial sections or X-ray microtomography. A voxel-based finite-element model, with the elements based on the microstructure and ice as the material, was used to calculate the stress distribution in the snow. A small elastic deformation was simulated and the bulk elastic moduli of these samples were determined. The simulated elastic modulus was 3–10 times or 10–100 times larger than previously published measurements. The deviation is possibly caused by the relatively slow deformation rates of the usual tests. This strain-rate effect is well known for pure ice. Locations of stress concentrations can be extracted and compared to the microstructural location of bonds. By this method we are able to determine mechanical properties of thin or extremely brittle snow layers which are otherwise difficult or impossible to measure.

Document Type: Research Article


Publication date: January 1, 2004

More about this publication?
  • The Annals of Glaciology is a peer-reviewed, thematic journal published 2 to 4 times a year by the International Glaciological Society (IGS). Publication frequency is determined and volume/issue numbers assigned by the IGS Council on a year-to-year basis and with a lead time of 3 to 4 years. The Annals of Glaciology is included in the ISI Science Citation Index from volume 50, number 50 onwards.

    Themes can be on any aspect of the study of snow and ice. Individual members can make a suggestion for a theme for an Annals issue to the Secretary General, who will forward it to the IGS Publications Committee. The IGS Publication Committee will make a recommendation for an individual themed Annals issue, together with a potential Annals Chief Editor for that issue, to IGS Council. The IGS Council will make the decision whether to proceed, taking into account the spread of topics and the overall capacity for publication of pages in Annals.

  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more