Skip to main content

Experimental and numerical study of granular flow and fence interaction

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

Dense snow avalanches are regarded as dry granular flows. This paper presents experimental and numerical modelling of deposition processes occurring when a gravity-driven granular flow meets a fence. A specific experimental device was set up, and a numerical model based on shallow-water theory and including a deposition model was used. Both tools were used to quantify how the retained volume upstream of the fence is influenced by the channel inclination and the obstacle height. We identified two regimes depending on the slope angle. In the slope-angle range where a steady flow is possible, the retained volume has two contributions: deposition along the channel due to the roughness of the bed and deposition due to the fence. The retained volume results only from the fence effects for higher slopes. The effects of slope on the retained volume also showed these two regimes. For low slopes, the retained volume decreases strongly with increasing slope. For higher slopes, the retained volume decreases weakly with increasing slope. Comparison between the experiments and computed data showed good agreement concerning the effect of fence height on the retained volume.

Document Type: Research Article

DOI: https://doi.org/10.3189/172756404781814870

Publication date: 2004-01-01

More about this publication?
  • The Annals of Glaciology is a peer-reviewed, thematic journal published 2 to 4 times a year by the International Glaciological Society (IGS). Publication frequency is determined and volume/issue numbers assigned by the IGS Council on a year-to-year basis and with a lead time of 3 to 4 years. The Annals of Glaciology is included in the ISI Science Citation Index from volume 50, number 50 onwards.

    Themes can be on any aspect of the study of snow and ice. Individual members can make a suggestion for a theme for an Annals issue to the Secretary General, who will forward it to the IGS Publications Committee. The IGS Publication Committee will make a recommendation for an individual themed Annals issue, together with a potential Annals Chief Editor for that issue, to IGS Council. The IGS Council will make the decision whether to proceed, taking into account the spread of topics and the overall capacity for publication of pages in Annals.

    Beginning in 2016, content will be available at https://www.cambridge.org/core/journals/annals-of-glaciology.

  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more