Skip to main content

The mass balance of a dry snow surface during a snowstorm

Buy Article:

$30.69 plus tax (Refund Policy)


This paper focuses on the surface mass balance of a horizontally homogeneous snowfield, with emphasis on the effects of snowdrift sublimation. A one dimensional model of the atmospheric boundary layer that includes snowdrift physics and thermodynamics is used. In sufficiently strong winds, snow particles are eroded from the surface. Once airborne, they are susceptible to sublimation. Averaged over longer time periods, the net erosive flux equals sublimation of snowdrift. However, model results show that there is no such balance in the course of a snowstorm event. They also indicate that snowdrift sublimation tends to enhance net erosion, but the increase occurs more slowly than the mass transfer by snowdrift sublimation, and the maximum is smaller. This difference in temporal behaviour influences the average erosion rate owing to non-linear interactions between snowdrift sublimation, drift density and erosion. Since the increase in relative humidity due to snowdrift diminishes surface sublimation, the average change in total ablation induced by snowdrift sublimation remains small. Observations made during snowdrift episodes in Antarctica agree qualitatively with some of the model results.

Document Type: Research Article


Publication date: January 1, 2004

More about this publication?
  • The Annals of Glaciology is a peer-reviewed, thematic journal published 2 to 4 times a year by the International Glaciological Society (IGS). Publication frequency is determined and volume/issue numbers assigned by the IGS Council on a year-to-year basis and with a lead time of 3 to 4 years. The Annals of Glaciology is included in the ISI Science Citation Index from volume 50, number 50 onwards.

    Themes can be on any aspect of the study of snow and ice. Individual members can make a suggestion for a theme for an Annals issue to the Secretary General, who will forward it to the IGS Publications Committee. The IGS Publication Committee will make a recommendation for an individual themed Annals issue, together with a potential Annals Chief Editor for that issue, to IGS Council. The IGS Council will make the decision whether to proceed, taking into account the spread of topics and the overall capacity for publication of pages in Annals.

  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more