Skip to main content

On the fracture toughness of snow

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

The release of a dry-snow slab avalanche involves brittle fracture. It is therefore essentially a non-linear fracture mechanics problem. Traditional snow-stability evaluation has mainly focused on snow strength measurements. Fracture toughness describes how well a material can withstand failure. The fracture toughness of snow is therefore a key parameter to assess fracture propagation propensity, and hence snow slope stability. Fracture toughness in tension KIc and shear KIIc was determined with notched cantilever-beam experiments in a cold laboratory. Measurements were performed at different temperatures and with different snow types of density  100–300 kg m−3, corresponding to typical dry-snow slab properties. The fracture toughness in tension KIc was found to be larger (by about a factor of 1.4) than in shear KIIc. Typical values of the fracture toughness were 500–1000 Pa m1/2 for the snow types tested. This suggests that snow is one of the most brittle materials known to man. A power-law relation of toughness KIc on relative density was found with an exponent of about 2. The fracture toughness in tension KIc decreased with increasing temperature following an Arrhenius relation below about −8°C with an apparent activation energy of about 0.16eV. Above −6°C the fracture toughness increased with increasing temperature towards the melting point, i.e.the Arrhenius relation broke down. The key property in dry-snow slab avalanche release, the critical crack size under shear at failure, was estimated to be about 1m.

Document Type: Research Article

DOI: https://doi.org/10.3189/172756404781814906

Publication date: 2004-01-01

More about this publication?
  • The Annals of Glaciology is a peer-reviewed, thematic journal published 2 to 4 times a year by the International Glaciological Society (IGS). Publication frequency is determined and volume/issue numbers assigned by the IGS Council on a year-to-year basis and with a lead time of 3 to 4 years. The Annals of Glaciology is included in the ISI Science Citation Index from volume 50, number 50 onwards.

    Themes can be on any aspect of the study of snow and ice. Individual members can make a suggestion for a theme for an Annals issue to the Secretary General, who will forward it to the IGS Publications Committee. The IGS Publication Committee will make a recommendation for an individual themed Annals issue, together with a potential Annals Chief Editor for that issue, to IGS Council. The IGS Council will make the decision whether to proceed, taking into account the spread of topics and the overall capacity for publication of pages in Annals.

    Beginning in 2016, content will be available at https://www.cambridge.org/core/journals/annals-of-glaciology.

  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more