Skip to main content

Laboratory studies of the flow rates of debris-laden ice

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

Ice-sheet basal ice is warmer than that above because of the heat from the Earth's interior. The stresses acting on the basal ice are greatest. In addition, the basal ice often contains debris consisting of silt and small stones picked up from the rock over which the ice flows. Because the base is the warmest part of an ice sheet and the stress there is greatest, flow rates in the basal ice are large and often contribute most of the ice movement. It is therefore important, for accurate modelling of the ice sheets, to know whether the debris within the basal ice enhances or retards the flow of the ice. In this paper, we describe laboratory deformation tests in uniaxial compression and in simple shear, on sand-laden ice. We find no significant dependence of flow rate on sand content (up to 15% volume) in the stress range 0.13-0.5 MPa and temperature range -0.02 to -18.0°C. Further work needs to include laboratory tests on debris-laden ice extracted from the polar ice sheets. This work is underway.

Document Type: Research Article

DOI: https://doi.org/10.3189/172756403781815537

Publication date: 2003-06-01

More about this publication?
  • The Annals of Glaciology is a peer-reviewed, thematic journal published 2 to 4 times a year by the International Glaciological Society (IGS). Publication frequency is determined and volume/issue numbers assigned by the IGS Council on a year-to-year basis and with a lead time of 3 to 4 years. The Annals of Glaciology is included in the ISI Science Citation Index from volume 50, number 50 onwards.

    Themes can be on any aspect of the study of snow and ice. Individual members can make a suggestion for a theme for an Annals issue to the Secretary General, who will forward it to the IGS Publications Committee. The IGS Publication Committee will make a recommendation for an individual themed Annals issue, together with a potential Annals Chief Editor for that issue, to IGS Council. The IGS Council will make the decision whether to proceed, taking into account the spread of topics and the overall capacity for publication of pages in Annals.

    Beginning in 2016, content will be available at https://www.cambridge.org/core/journals/annals-of-glaciology.

  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more