Does englacial water storage drive temperate glacier surges?

$31.40 plus tax (Refund Policy)

Buy Article:

Abstract:

Hydrological studies of surge-type and steady-flow glaciers, combined with recent space-borne synthetic aperture radar interferometry measurements of the motion of Bagley Ice Valley, Alaska, U.S.A., during its 1993-95 surge, suggest a temperate-glacier surge hypothesis that is consistent with observational evidence and appears capable of shedding light on several aspects of surge behavior. We propose that the fundamental driver of temperate-glacier surges is englacial storage of water, combined with gravity-driven movement of stored water to the bed during winter. Whether a given glacier is surge-type is a matter not of whether, but of the degree to which, these processes occur. A surge-type glacier must have sufficient storage capacity for continued downward movement of englacially stored water during winter to finally overwhelm the constricted basal drainage system, thereby forcing pervasive failure of the subglacial till—or, alternatively, widespread and rapid basal sliding—thus initiating a surge. We further propose that the "sufficient storage capacity" requirement is most easily met by glaciers with large thickness, which are therefore likely to be long and to have, on average, low surface slopes.The average length of the surge cycle in a given region appears to be a function of the mass balances, which, after each surge, determine the time required to restore glaciers to their pre-surge geometries. We suggest that the stochastic timing of surge onset for a particular glacier, however, is a result of the uncertainty of the meteorological conditions required to cause englacial storage of a sufficiently large volume of water.

Document Type: Research Article

DOI: http://dx.doi.org/10.3189/172756403781816464

Publication date: January 1, 2003

More about this publication?
  • The Annals of Glaciology is a peer-reviewed, thematic journal published 2 to 4 times a year by the International Glaciological Society (IGS). Publication frequency is determined and volume/issue numbers assigned by the IGS Council on a year-to-year basis and with a lead time of 3 to 4 years. The Annals of Glaciology is included in the ISI Science Citation Index from volume 50, number 50 onwards.

    Themes can be on any aspect of the study of snow and ice. Individual members can make a suggestion for a theme for an Annals issue to the Secretary General, who will forward it to the IGS Publications Committee. The IGS Publication Committee will make a recommendation for an individual themed Annals issue, together with a potential Annals Chief Editor for that issue, to IGS Council. The IGS Council will make the decision whether to proceed, taking into account the spread of topics and the overall capacity for publication of pages in Annals.

  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more