Skip to main content

Electromagnetic wave speed in polar ice: validation of the common-midpoint technique with high-resolution dielectric-profiling and -density measurements

Buy Article:

$30.69 plus tax (Refund Policy)


The accuracy of the travel-time-velocity and travel-time-depth profile derived from ground-penetrating radar (GPR) common-midpoint (CMP) surveys at different frequencies is investigated for the first time ever by direct comparison with the profile calculated from high-resolution dielectric-profiling (DEP) ice-core data. In addition, we compare two travel-time profiles calculated from ice-core density data by means of different dielectrical mixture models with the DEP-based profile. CMP surveys were carried out at frequencies of 25,50,100 and 200 MHz near the new European deep-drilling site DML05 in Dronning Maud Land, Antarctica, during the 1998/99 field season. An improved scanning capacitor for high-resolution DEP and a -densiometer for density measurements were used to determine the complex dielectric constant and the density at 5 mm increments along the ice core B32, retrieved in 1997/98 at DML05. The comparisons with DEP- and density-based velocity series show that the CMP velocity series are slightly higher but asymptotically approach the core-based velocities with depth. Root-mean-square differences of the DEP velocity series range between 8% for the 25 MHz CMP and 2% in the case of the 200 MHz survey. Density-based velocities differ from the DEP velocities by <1%. The travel-time-depth series calculated from the interval velocities show a better agreement between all series than the velocity series. Differences are 5.7-1.4% for the 25 and 200 MHz CMP measurements, and <0.6% for the density data. Based on these comparisons, we evaluate the accuracy with which the depth of electromagnetic reflectors observed in common-offset profiles can be determined, and discuss reasons for the observed differences between CMP- and core-based profiles. Moreover, we compare the errors determined from the field measurements with those estimated from GPR system characteristics to provide a measure that can be used to estimate the accuracy of GPR analyses for the planning of GPR campaigns. Our results show that CMP surveys are a useful technique to determine the depth of radar reflectors in combination with common-offset measurements, especially on a region-wide basis.

Document Type: Research Article


Publication date: January 1, 2002

More about this publication?
  • The Annals of Glaciology is a peer-reviewed, thematic journal published 2 to 4 times a year by the International Glaciological Society (IGS). Publication frequency is determined and volume/issue numbers assigned by the IGS Council on a year-to-year basis and with a lead time of 3 to 4 years. The Annals of Glaciology is included in the ISI Science Citation Index from volume 50, number 50 onwards.

    Themes can be on any aspect of the study of snow and ice. Individual members can make a suggestion for a theme for an Annals issue to the Secretary General, who will forward it to the IGS Publications Committee. The IGS Publication Committee will make a recommendation for an individual themed Annals issue, together with a potential Annals Chief Editor for that issue, to IGS Council. The IGS Council will make the decision whether to proceed, taking into account the spread of topics and the overall capacity for publication of pages in Annals.

  • Editorial Board
  • Information for Authors
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more