Skip to main content

A model for kinetic grain growth

Buy Article:

$30.69 plus tax (Refund Policy)


Snow-cover models are used in many applications in today's snow and ice research. Descriptions of changes in size and shape are a major problem in modelling the snow cover. Empirical models for kinetic growth under temperature gradients have been developed, as well as more complicated models based upon microstructure. In this work a simple, physically based model is derived which depends on one adjustable geometric factor only. Snow texture is described as a body-centred cubic lattice containing source and sink grains. The latter grow as plates due to water-vapour transport in the layer as well as between the layers. The model was implemented in a research version of the one-dimensional snow-cover model SNOWPACK. Model outputs are compared to experiments done in the cold laboratory where sieved snow is subjected to temperature gradients. Disaggregated snow samples are analyzed by digital image processing, by sieving and by visual characterization. In order to determine grain-size as objectively as possible, these various methods are evaluated for compatibility. The new model simulates very well kinetic grain growth for densities of 100–200 kgm−3 and temperature gradients up to −200 K m−1. The model will be incorporated in the operational version of SNOWPACK.

Document Type: Research Article


Publication date: January 1, 2001

More about this publication?
  • The Annals of Glaciology is a peer-reviewed, thematic journal published 2 to 4 times a year by the International Glaciological Society (IGS). Publication frequency is determined and volume/issue numbers assigned by the IGS Council on a year-to-year basis and with a lead time of 3 to 4 years. The Annals of Glaciology is included in the ISI Science Citation Index from volume 50, number 50 onwards.

    Themes can be on any aspect of the study of snow and ice. Individual members can make a suggestion for a theme for an Annals issue to the Secretary General, who will forward it to the IGS Publications Committee. The IGS Publication Committee will make a recommendation for an individual themed Annals issue, together with a potential Annals Chief Editor for that issue, to IGS Council. The IGS Council will make the decision whether to proceed, taking into account the spread of topics and the overall capacity for publication of pages in Annals.

  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more