Skip to main content

Comparison of finite-element and homogenization methods for modelling the viscoplastic behaviour of a S2-columnar-ice polycrystal

Buy Article:

$30.69 plus tax (Refund Policy)


The main homogenization schemes used to model the behaviour of poly-crystalline ice are assessed by studying the particular case of a two-dimensional poly-crystal which represents natural S2-columnar ice. The results of the uniform-stress, uniform-strain-rate and one-site self-consistent models are compared to finite-element computations. The comparisons were made using the same model of grain, described as a continuous transversely isotropic medium, in the linear and non-linear cases. The uniform-stress and uniform-strain-rate models provide upper and lower bounds for the macroscopic fluidity which are too far from each other to be useful when a degree of anisotropy relevant to ice is considered. Although the self-consistent model gives a weak representation of the interaction between a grain and its surroundings, due to the strong anisotropy of the ice crystal, the resulting macroscopic behaviour is found to be acceptable when compared to the results from finite-element computations.

Document Type: Research Article


Publication date: January 1, 2000

More about this publication?
  • The Annals of Glaciology is a peer-reviewed, thematic journal published 2 to 4 times a year by the International Glaciological Society (IGS). Publication frequency is determined and volume/issue numbers assigned by the IGS Council on a year-to-year basis and with a lead time of 3 to 4 years. The Annals of Glaciology is included in the ISI Science Citation Index from volume 50, number 50 onwards.

    Themes can be on any aspect of the study of snow and ice. Individual members can make a suggestion for a theme for an Annals issue to the Secretary General, who will forward it to the IGS Publications Committee. The IGS Publication Committee will make a recommendation for an individual themed Annals issue, together with a potential Annals Chief Editor for that issue, to IGS Council. The IGS Council will make the decision whether to proceed, taking into account the spread of topics and the overall capacity for publication of pages in Annals.

  • Editorial Board
  • Information for Authors
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more