Skip to main content

Non-parametric bootstrapping of partitioned datasets

Buy Article:

$16.27 plus tax (Refund Policy)


Non-parametric bootstrapping is one of the most commonly used methods for branch support assessment. Unlike Bayesian posterior probability values, which are influenced by a priori data partitioning, non-parametric bootstrapping is usually applied to unpartitioned (combined) datasets. The resulting bootstrap support values are misleading in that they do not measure how well clades are supported by all the partitions, unless all partitions are equal in size (i.e., number of characters). Since most empirical studies include data partitions that are heterogeneous in size, our current bootstrapping approach for partitioned datasets (i.e., bootstrapping the combined dataset) is not adequate. Here I propose a simple modification to non-parametric bootstrapping that takes a priori data partitioning into account by obtaining bootstrap replicates for each partition separately and combining them in such a way that the size (i.e., number of characters) of each partition is taken into account. With this “corrected” bootstrap support value, characters from smaller partitions will have greater influence on final bootstrap values, and those in larger partitions relatively less influence than they would for unpartitioned data.


Document Type: Research Article

Publication date: August 1, 2009

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more