Skip to main content

Quantifying Transfer Rates of Salmonella and Escherichia coli O157:H7 between Fresh-Cut Produce and Common Kitchen Surfaces

Buy Article:

$37.00 plus tax (Refund Policy)

Abstract:

Cross-contamination between foods and surfaces in food processing environments and home kitchens may play a significant role in foodborne disease transmission. This study quantifies the cross-contamination rates between a variety of fresh-cut produce and common kitchen surfaces (ceramic, stainless steel, glass, and plastic) using scenarios that differ by cross-contamination direction, surface type, produce type, and drying time/moisture level. A five-strain cocktail of rifampin-resistant Salmonella was used in transfer scenarios involving celery, carrot, and watermelon, and a five-strain cocktail of rifampin-resistant Escherichia coli O157:H7 was used in transfer scenarios involving lettuce. Produce or surface coupons were placed in buffer-filled filter bags and homogenized or massaged, respectively, to recover cells. The resulting solutions were serially diluted in 0.1% peptone and surface plated onto tryptic soy agar with 80 μg/ml rifampin and bismuth sulfite agar with 80 μg/ml rifampin for Salmonella or sorbitol MacConkey agar with 80 μg/ml rifampin for E. coli O157:H7. When the food contact surface was freshly inoculated, a high amount (>90%) of the inoculum was almost always transferred to the cut produce item. If the inoculated food contact surfaces were allowed to dry for 1 h, median transfer was generally >90% for carrots and watermelon but ranged from <1 to ∼70% for celery and lettuce. Freshly inoculated celery or lettuce transferred more bacteria (<2 to ∼25% of the inoculum) compared with freshly inoculated carrots or watermelon (approximately <1 to 8%). After 1 h of drying, the rate of transfer from inoculated celery, carrot, and lettuce was <0.01 to ∼5% and <1 to ∼5% for watermelon. Surface moisture and direction of transfer have the greatest influence on microbial transfer rates.

Document Type: Research Article

DOI: http://dx.doi.org/10.4315/0362-028X.JFP-13-098

Affiliations: 1: Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey, 08901-8520 2: Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida 33850 3: Department of Food Science and Technology, University of California, One Shields Avenue, Davis, California 95616-8598, USA 4: Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey, 08901-8520;, Email: schaffner@aesop.rutgers.edu

Publication date: September 1, 2013

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at www.foodprotection.org.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
iafp/jfp/2013/00000076/00000009/art00005
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more