If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Localization of Viable Salmonella Typhimurium Internalized through the Surface of Green Onion during Preharvest

$37.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Internalization of pathogens poses a tremendous health risk in the consumption of raw fresh produce, because conventional washing cannot remove pathogens effectively after internalization occurs. We investigated (i) the pattern of Salmonella internalization in different parts of green onions when it was contaminated on their surfaces, and (ii) whether environmental factors (extreme weather) affect the extent of Salmonell a internalization. Green onions were surface contaminated with three different levels of Salmonella Typhimurium (1, 3, and 5 log CFU per green onion). Each contamination group was irrigated with three different water volumes to mimic water stress and to determine if Salmonella Typhimurium internalization was localized in different parts of the plant. The plants were collected 2 days after contamination, and surface bacteria were inactivated with ethanol and silver nitrate. The plants were then cut into two parts, upper and lower. The internalized Salmonella Typhimurium in each part was visualized and confirmed with a laser scanning confocal microscope and was quantified with the plate count method and real-time quantitative PCR (qPCR). The results indicate that Salmonella Typhimurium can be taken up through the plant surface and transported from the upper to the lower part of the plant. The level of viable internalized Salmonella Typhimurium (plate count) was higher in the lower part than the level in the upper leafy part, especially when the leaves were contaminated with a high concentration of Salmonella (5 log CFU, P < 0.05), whereas the total internalized Salmonella Typhimurium (by qPCR) was higher in the upper part (P < 0.05) at the same contamination level. The discrepancy between these results suggests that most internalized Salmonella lost viability in the upper part but survived in the lower part. Water stress did not significantly change the extent of internalization in either location of green onion, whether detected via plate count or qPCR when the contamination occurred on the surface.

Document Type: Research Article

DOI: http://dx.doi.org/10.4315/0362-028X.JFP-12-374

Affiliations: 1: Department of Food Science and Technology, The Ohio State University, 110 Parker Building, 2015 Fyffe Road, Columbus, Ohio 43210-1007, USA 2: Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, Ohio 43210-1007, USA 3: Department of Food Science and Technology, The Ohio State University, 110 Parker Building, 2015 Fyffe Road, Columbus, Ohio 43210-1007, USA; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, Ohio 43210-1007, USA. jlee@cph.osu.edu

Publication date: April 1, 2013

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more