Comparison of the Presence of Shiga Toxin 1 in Food Matrices as Determined by an Enzyme-Linked Immunosorbent Assay and a Biological Activity Assay

$37.00 plus tax (Refund Policy)

Buy Article:

Abstract:

This study was conducted to compare the identification of Shiga toxin 1 (Stx1) based on its specific biological activity and based on results of a commercial enzyme-linked immunosorbent assay (ELISA) kit. Stx1 was thermally treated for various periods in phosphate-buffered saline, milk, and orange juice. The residual Stx1 concentration was determined with the commercial ELISA kit, and its residual enzymatic activity (amount of adenine released from a 2,551-bp DNA substrate) was determined with a biological activity assay (BAA). Regression analysis indicated that the inactivation of Stx1 as a function of time followed first-order kinetics. The half-lives determined at 60, 65, 70, 75, 80, and 85°C were 9.96, 3.19, 2.67, 0.72, 0.47, and 0.29 min, respectively, using the BAA. The half-lives determined by the ELISA with thermal treatments at 70, 75, 80, and 85°C were 40.47, 11.03, 3.64, and 1.40 min, respectively. The Z, Q 10, and Arrhenius activation energy values derived by both assays were dissimilar, indicating that the rate of inactivation of the active site of Stx1 was less sensitive to temperature change than was denaturation of the epitope(s) used in the ELISA. These values were 10.28°C and 9.40 and 54.70 kcal/mol, respectively, with the ELISA and 16°C and 4.11 and 34 kcal/mol, respectively, with the BAA. Orange juice enhanced Stx1 inactivation as a function of increasing temperature, whereas inactivation in 2% milk was not very much different from that in phosphate-buffered saline. Our investigation indicates that the ELISA would be a reliable method for detecting the residual toxicity of heat-treated Stx1 because the half-lives determined with the ELISA were greater than those determined with the BAA (faster degradation) at all temperatures and were highly correlated (R 2 = 0.994) with those determined with the BAA.

Document Type: Research Article

DOI: http://dx.doi.org/10.4315/0362-028X.JFP-11-372

Affiliations: Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, Saint Paul, Minnesota 55108, USA

Publication date: June 1, 2012

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more