Susceptibility to Cronobacter sakazakii Decreases with Increasing Age in Neonatal CD-1 Mice

Authors: Richardson, Arena N.1; Pollak, Elizabeth A.1; Williams, Denita1; Agyekum, A. Kwaku1; Smith, Mary Alice2

Source: Journal of Food Protection®, Number 5, May 2012, pp. 812-997 , pp. 884-888(5)

Publisher: International Association for Food Protection

Buy & download fulltext article:


Price: $37.00 plus tax (Refund Policy)


Neonatal, premature, or very low birth weight infants fed reconstituted powdered infant formula contaminated with Cronobacter (Enterobacter sakazakii) may develop infections resulting in severe outcomes such as septicemia, necrotizing enterocolitis, meningitis, or death. Infants who recover from infection may have morbidities such as hydrocephalus, mental retardation, or developmental delays. Although increasing age appears to reduce susceptibility to Cronobacter infection, it is not known at what age or why these infants become less susceptible. Our study objectives were to compare the susceptibilities of neonatal mice of different ages to Cronobacter sakazakii infection. Timed-pregnant CD-1 mice were allowed to give birth naturally. Neonatal mice were orally gavaged at postnatal days (PNDs) 1.5, 5.5, and 9.5 with a single dose of vehicle or 103, 107, or 1010 CFU/ml C. sakazakii strain MNW2 in reconstituted powdered infant formula. Pups were euthanized 7 days after challenge. Brains, livers, and ceca were excised and analyzed for C. sakazakii invasion, and blood was collected for serum amyloid A analysis as a biomarker of infection. C. sakazakii invasion was age dependent; the pathogen was isolated from brains, livers, and ceca of neonatal mice treated at PNDs 1.5 and 5.5 but not from those of pups treated at PND 9.5. C. sakazakii was more invasive at PND 1.5 in brains than in livers and ceca and was isolated from 22, 14, and 18% of these tissue samples, respectively. Serum amyloid A was detected in only one treated neonate. Mortality was observed only in neonates treated at PND 1.5. In conclusion, neonatal mice had a time-dependent susceptibility to C. sakazakii infection, with resistance increasing with increasing age.

Document Type: Research Article


Affiliations: 1: Department of Environmental Health Science, 206 Environmental Health Science Building, University of Georgia, Athens, Georgia 30602-2102 2: Department of Environmental Health Science, 206 Environmental Health Science Building, University of Georgia, Athens, Georgia 30602-2102, Center for Food Safety, 1109 Experiment Street, University of Georgia, Griffin, Georgia 30223-1797, USA;, Email:

Publication date: May 1, 2012

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: or Web site:
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page