Skip to main content

Patulin Reduction in Apple Juice from Concentrate by UV Radiation and Comparison of Kinetic Degradation Models between Apple Juice and Apple Cider

Buy Article:

$37.00 plus tax (Refund Policy)


Patulin, a mycotoxin produced by several genera of fungi, including Byssochlamys, Aspergillus, and Penicillium, has been an important concern in apple cider and apple juice due to its toxicity and health consequences. In this study, the effects of UV on the patulin level, physical and chemical properties, and sensory attributes in apple juice from concentrate were investigated. Kinetic modeling of patulin reduction by UV radiation in apple juice from concentrate was calculated and compared with the degradation rate observed previously in apple cider. From an initial patulin contamination of approximately 1,000 ppb (μg/liter), the UV exposure, ranging from 14.2 mJ/cm2 (one pass) to 99.4 mJ/cm2 (seven passes), was successful in reducing patulin levels by 72.57% ± 2.76% to 5.14% ± 0.70%, respectively. Patulin reduction by UV radiation followed first-order kinetic modeling in a fashion similar to first-order microbial inactivation. An exponential correlation between UV exposure and the percentage of patulin remaining was observed, giving an r 2 value of 0.9950. Apple juice was repeatedly exposed to 14.2 mJ/cm2 for each treatment, and patulin levels were significantly decreased when compared with the level obtained with the previous UV exposure treatment. While there were no significant differences in the percentages of titratable acidity and ascorbic acid (P > 0.05), there were minor yet random sampling differences in pH and degrees Brix (1 °Brix is 1 g of sucrose in 100 g of solution; the °Brix represents the soluble solids content of the solution as percentage by weight [%, wt/wt]) (P ≤ 0.05). A significant difference (P ≤ 0.05) in sensory perception for the finished apple juice was detected between the control and the full seven-pass UV radiation treatment using an experienced consumer panel and a triangle test. Patulin reduction by UV radiation from both the current study and a previous study involving apple cider was compared, which showed that both matrices strongly fit a first-order kinetic degradation model. However, the kinetic constant for degradation in apple juice was approximately 5.5 times greater than that observed in an apple cider matrix.

Document Type: Research Article


Affiliations: 1: Department of Food Science, New York State Agricultural Experiment Station, Cornell University, Geneva, New York 14456, USA 2: Department of Food Science, New York State Agricultural Experiment Station, Cornell University, Geneva, New York 14456, USA., Email:

Publication date: April 1, 2012

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more