If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Effect of Surface Roughness on Inactivation of Escherichia coli O157:H7 87-23 by New Organic Acid–Surfactant Combinations on Alfalfa, Broccoli, and Radish Seeds

$37.00 plus tax (Refund Policy)

Buy Article:


Surface roughness has been reported as one of the factors affecting microbial attachment and removal. Seed surfaces are complex, and different seed varieties have different surface topographies. As a result, a sanitizer effective in eliminating pathogenic bacteria on one seed may not be as effective when applied to another seed. The objectives of this research were (i) to investigate the efficacy of malic acid and thiamine dilaurylsulfate (TDS) combined treatments for inactivation of E. coli O157:H7 strain 87-23 on alfalfa, broccoli, and radish seeds, (ii) to quantify surface roughness of the seeds, and (iii) to determine the correlation between microbial removal and surface roughness. The surface roughness of each seed type was measured by confocal laser scanning microscopy (CLSM) and surface profilometry. Surface roughness (Ra) values of the seeds were then calculated from CLSM data. Seeds inoculated with E. coli O157:H7 87-23 were washed for 20 min in malic acid and TDS solutions and rinsed for 10 min in tap water. Radish seeds had the highest Ra values, followed by broccoli and alfalfa seeds. A combination of 10% malic acid and 1% TDS was more effective than 20,000 ppm of Ca(OCl)2 for inactivation of E. coli O157:H7 87-23 on broccoli seeds, while the inactivation on radish and alfalfa seeds was not significantly different compared with the 20,000-ppm Ca(OCl)2 wash. Overall, a negative correlation existed between the seeds' Ra values and microbial removal. Different seeds had different surface roughness, contributing to discrepancies in the ability of the sanitizers to eliminate E. coli O157:H7 87-23 on the seeds. Therefore, the effectiveness of one sanitizer on one seed type should not be translated to all seed varieties.

Document Type: Research Article

DOI: http://dx.doi.org/10.4315/0362-028X.JFP-11-279

Affiliations: 1: Department of Food Science and Human Nutrition, University of Illinois at Urbana–Champaign, 1304 West Pennsylvania Avenue, Urbana, Illinois 61801, USA 2: Department of Food Science and Human Nutrition, University of Illinois at Urbana–Champaign, 1304 West Pennsylvania Avenue, Urbana, Illinois 61801, USA. haofeng@illinois.edu

Publication date: February 1, 2012

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more