Skip to main content

Temporal Expression of Staphylococcal Enterotoxin H in Comparison with Accessory Gene Regulator–Dependent and –Independent Enterotoxins

Buy Article:

$37.00 plus tax (Refund Policy)

Abstract:

Using sandwich enzyme-linked immunosorbent assay (ELISA), the production of staphylococcal enterotoxin (SE) H was determined in 22 Staphylococcus aureus isolates bearing the seh gene. Samples of supernatants were taken at four time points corresponding to exponential phase (optical density at 600 nm [OD600] 0.3 to 0.6), late exponential phase (OD600 2 to 4), early stationary phase (OD600 4 to 6), and late stationary phase (OD600 7 to 12). In four isolates, SEH was detectable at a very low level at the first time point. In 18 isolates, the earliest SEH production was detected in the late exponential phase. For all isolates, there was an increase of SEH concentration with time. Western blot analysis revealed that SEH production, similar to SEA, started in the early exponential phase (OD600 ∼ 0.5). Isolates with high SEH productivity, as measured by ELISA, demonstrated a higher seh transcription as well. sec transcription was induced in the stationary phase. An induction in the sea transcript was observed during mid- to late exponential phase. Expression profile of seh was similar to that of sea. We showed that the seh expression profile is similar to that of Agr-independent sea and not to that of Agr-dependent sec genes. SEH can be effectively expressed at low bacterial counts, meaning that even in an environment not favorable for S. aureus growth, seh-bearing strains can pose a risk for food safety.

Document Type: Research Article

DOI: http://dx.doi.org/10.4315/0362-028X.JFP-11-336

Affiliations: 1: Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland 2: Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland 3: Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland. jacek.bania@up.wroc.pl

Publication date: February 1, 2012

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at www.foodprotection.org.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites
iafp/jfp/2012/00000075/00000002/art00004
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more