If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Influence of NaCl and NaNO3 on Sinigrin Hydrolysis by Foodborne Bacteria

$37.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The glucosinolate sinigrin (SNG) is converted by endogenous plant myrosinase or by bacterial myrosinase-like activity to form the potent antimicrobial allyl isothiocyanate. In order to use SNG as a natural antimicrobial precursor in food, it became important to better understand the ability of bacteria to synthesize the enzyme(s) and understand factors influencing this synthesis at a constant SNG concentration. Eight spoilage, pathogenic, or starter culture bacteria were grown separately in medium containing individual or combined salts with SNG. SNG degradation by the bacteria and the formation of its major degradation product, allyl isothiocyanate, were followed for 12 days at 30 or 35°C. The bacterial strains varied in their ability to metabolize SNG, and this was enhanced by NaCl and/or NaNO3. SNG hydrolysis took place after 4 days, and the greatest amount occurred by day 12. At 12 days, Escherichia coli O157:H7 showed the greatest capacity to hydrolyze SNG (45.3% degradation), followed by Staphylococcus carnosus (44.57%), while Pseudomonas fluorescens was not active against SNG. The ability of tested strains to metabolize SNG, in decreasing order, was as follows: Escherichia coli O157:H7 > Staphylococcus carnosus > Staphylococcus aureus > Pediococcus pentosaceus > Salmonella Typhimurium > Listeria monocytogenes > Enterococcus faecalis > Pseudomonas fluorescens.

Document Type: Research Article

DOI: http://dx.doi.org/10.4315/0362-028X.JFP-11-284

Affiliations: 1: Department of Nutrition and Food Science, Mutah University, Karak, Jordan 2: Instituto Tecnológico del Embalaje, Transporte y Logística (ITENE), Parque Technologica, C/Albert Einstein, 1, 46980 Paterna, Valencia, Spain 3: Department of Food Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

Publication date: December 1, 2011

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more